翻訳と辞書
Words near each other
・ Chiemi
・ Chiemi Chiba
・ Chiemi Eri
・ Chiemi Takahashi
・ Chieming
・ Chiemsee
・ Chiemsee (municipality)
・ Chiemsee Cauldron
・ Chien Chung-liang
・ Chien de Jean de Nivelle
・ Chien Français Blanc et Noir
・ Chien Français Blanc et Orange
・ Chien Français Tricolore
・ Chien Hsin University of Science and Technology
・ Chien Kok-Ching
Chien search
・ Chien Shih-Liang
・ Chien Tai-lang
・ Chien Tang River Bridge
・ Chien Wei-chuan
・ Chien Wei-zang
・ Chien Wen-pin
・ Chien Yu-chin
・ Chien Yu-hsiu
・ Chien-Cheng Circle
・ Chien-Chi Chang
・ Chien-gris
・ Chien-Ming Wang
・ Chien-Shiung Wu
・ Chien-Shiung Wu College


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chien search : ウィキペディア英語版
Chien search
In abstract algebra, the Chien search, named after Robert T. Chien, is a fast algorithm for determining roots of polynomials defined over a finite field. The most typical use of the Chien search is in finding the roots of error-locator polynomials encountered in decoding Reed-Solomon codes and BCH codes.
==Algorithm==
We denote the polynomial (over the finite field GF(q)) whose roots we wish to determine as:
:\ \Lambda(x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \cdots + \lambda_t x^t
Conceptually, we may evaluate \Lambda(\beta) for each non-zero \beta in GF(q). Those resulting in 0 are roots of the polynomial.
The Chien search is based on two observations:
* Each non-zero \beta may be expressed as \alpha^ for some i_\beta, where \alpha is a primitive element of \mathrm(q), i_\beta is the power number of primitive element \alpha. Thus the powers \alpha^i for 0 \leq i < (q-1) cover the entire field (excluding the zero element).
* The following relationship exists:
:
\begin
\Lambda(\alpha^i) &=& \lambda_0 &+& \lambda_1 (\alpha^i) &+& \lambda_2 (\alpha^i)^2 &+& \cdots &+& \lambda_t (\alpha^i)^t \\
&\triangleq& \gamma_ &+& \gamma_ &+& \gamma_ &+& \cdots &+& \gamma_
\end

:
\begin
\Lambda(\alpha^) &=& \lambda_0 &+& \lambda_1 (\alpha^) &+& \lambda_2 (\alpha^)^2 &+& \cdots &+& \lambda_t (\alpha^)^t \\
&=& \lambda_0 &+& \lambda_1 (\alpha^i)\,\alpha &+& \lambda_2 (\alpha^i)^2\,\alpha^2 &+& \cdots &+& \lambda_t (\alpha^i)^t\,\alpha^t \\
&=& \gamma_ &+& \gamma_\,\alpha &+& \gamma_\,\alpha^2 &+& \cdots &+& \gamma_\,\alpha^t \\
&\triangleq& \gamma_ &+& \gamma_ &+& \gamma_ &+& \cdots &+& \gamma_
\end

In other words, we may define each \Lambda(\alpha^i) as the sum of a set of terms \, from which the next set of coefficients may be derived thus:
:\ \gamma_ = \gamma_\,\alpha^j
In this way, we may start at i = 0 with \gamma_ = \lambda_j, and iterate through each value of i up to (q-1). If at any stage the resultant summation is zero, i.e.
:\ \sum_^t \gamma_ = 0,
then \Lambda(\alpha^i) = 0 also, so \alpha_i is a root. In this way, we check every element in the field.
When implemented in hardware, this approach significantly reduces the complexity, as all multiplications consist of one variable and one constant, rather than two variables as in the brute-force approach.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chien search」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.